Header Ads

May 2016, Some Publications using Morris Water Maze


The water maze paradigm in experimental studies of chronic cognitive disorders: Theory, protocols, analysis, and inference

M Kapadia, J Xu, B Sakic 

An instrumental step in assessing the validity of animal models of chronic cognitive disorders is to document disease-related deficits in learning/memory capacity. The water maze (WM) is a popular paradigm because of its low cost, relatively simple protocol and short procedure time. Despite being broadly accepted as a spatial learning task, inference of generalized, bona fide “cognitive” dysfunction can be challenging because task accomplishment is also reliant on non-cognitive processes. We review theoretical background, testing procedures, confounding factors, as well as approaches to data analysis and interpretation. We also describe an extended protocol that has proven useful in detecting early performance deficits in murine models of neuropsychiatric lupus and Alzheimer’s disease. Lastly, we highlight the need for standardization of inferential criteria on “cognitive” dysfunction in experimental rodents and exclusion of preparations of a limited scientific merit. A deeper appreciation for the multifactorial nature of performance in WM may also help to reveal other deficits that herald the onset of neurodegenerative brain disorders.

--

Differences in Behavioral Responding in Adult and Aged Rats Following Chronic Ethanol Exposure

A Novier, LC Ornelas…

Research suggests symptoms of chronic alcoholism, and withdrawal may be more severe in elderly compared with younger adults. However, examination of the effects of long-term ethanol (EtOH) consumption and withdrawal is limited in aged rodents. We thus investigated EtOH withdrawal and potential deficits in cognitive and motor behavior in young adult and aged rats. We also examined the effects of acute allopregnanolone as a potential mechanism contributing to age-related differences in EtOH's cognitive-impairing effects.
--

Treatment of traumatic brain injury in rats with N-acetyl-seryl-aspartyl-lysyl-proline

Y Zhang, ZG Zhang, M Chopp, Y Meng, L Zhang…

The authors' previous studies have suggested that thymosin beta 4 (Tβ4), a major actin-sequestering protein, improves functional recovery after neural injury. N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an active peptide fragment of Tβ4. Its effect as a treatment of traumatic brain injury (TBI) has not been investigated. Thus, this study was designed to determine whether AcSDKP treatment improves functional recovery in rats after TBI.

No comments

Powered by Blogger.